A zero-energy building, also known as a zero net energy (ZNE) building, Net-Zero Energy Building (NZEB), or Net Zero Building, is a popular term to describe a building with zero net energy consumption and zero carbon emissions annually.[1] Zero energy buildings can be independent from the energy grid supply. Energy can be harvested on-site—usually through a combination of energy producing technologies like Solar and Wind—while reducing the overall use of energy with extremely efficient HVAC and Lighting technologies. The zero-energy design principle is becoming more practical to adopt due to the increasing costs of traditional fossil fuels and their negative impact on the planet's climate and ecological balance.
The zero net energy consumption principle is gaining considerable interest as renewable energy harvesting is a means to cut greenhouse gas emissions. Traditional building consumes 40% of the total fossil energy in the US and European Union.[2][3]
Contents |
The development of modern zero-energy buildings became possible not only through the progress made in new construction technologies and techniques, but it has also been significantly improved by academic research on traditional and experimental buildings, which collected precise energy performance data. Today's advanced computer models can show the efficacy of engineering design decisions.
Energy use can be measured in different ways (relating to cost, energy, or carbon emissions) and, irrespective of the definition used, different views are taken on the relative importance of energy harvest and energy conservation to achieve a net energy balance. Although zero energy buildings remain uncommon in developed countries, they are gaining importance and popularity. The zero net energy approach has potential to reduce carbon emissions, and reduce dependence on fossil fuels.
A building approaching zero net energy use may be called a "near-zero energy building" or "ultra-low energy house". Buildings that produce a surplus of energy during a portion of the year may be known as "energy-plus buildings".
If the building is located in an area that requires heating or cooling throughout parts of the year, it is easier to achieve zero net energy consumption when the available living space is kept small.
Despite sharing the name "zero net energy", there are several definitions of what the term means in practice, with a particular difference in usage between North America and Europe.[4]
The most cost-effective steps toward a reduction in a building's energy consumption usually occurs during the design process.[5] To achieve efficient energy use, zero energy design departs significantly from conventional construction practice. Successful zero energy building designers typically combine time tested passive solar, or natural conditioning, principles that work with the on site assets. Sunlight and solar heat, prevailing breezes, and the cool of the earth below a building, can provide daylighting and stable indoor temperatures with minimum mechanical means. ZEBs are normally optimized to use passive solar heat gain and shading, combined with thermal mass to stabilize diurnal temperature variations throughout the day, and in most climates are superinsulated.[6] All the technologies needed to create zero energy buildings are available off-the-shelf today.
Sophisticated 3D computer simulation tools are available to model how a building will perform with a range of design variables such as building orientation (relative to the daily and seasonal position of the sun), window and door type and placement, overhang depth, insulation type and values of the building elements, air tightness (weatherization), the efficiency of heating, cooling, lighting and other equipment, as well as local climate. These simulations help the designers predict how the building will perform before it is built, and enable them to model the economic and financial implications on building cost benefit analysis, or even more appropriate - life cycle assessment.
Zero-energy buildings are built with significant energy-saving features. The heating and cooling loads are lowered by using high-efficiency equipment, added insulation, high-efficiency windows, natural ventilation, and other techniques. These features vary depending on climate zones in which the construction occurs. Water heating loads can be lowered by using water conservation fixtures, heat recovery units on waste water, and by using solar water heating, and high-efficiency water heating equipment. In addition, daylighting with skylights or solartubes can provide 100% of daytime illumination within the home. Nighttime illumination is typically done with fluorescent and LED lighting that use 1/3 or less power than incandescent lights, without adding unwanted heat. And miscellaneous electric loads can be lessened by choosing efficient appliances and minimizing phantom loads or standby power. Other techniques to reach net zero (dependent on climate) are Earth sheltered building principles, superinsulation walls using straw-bale construction, Vitruvianbuilt pre-fabricated building panels and roof elements plus exterior landscaping for seasonal shading.
Zero-energy buildings are often designed to make dual use of energy including white goods; for example, using refrigerator exhaust to heat domestic water, ventilation air and shower drain heat exchangers, office machines and computer servers, and body heat to heat the building. These buildings make use of heat energy that conventional buildings may exhaust outside. They may use heat recovery ventilation, hot water heat recycling, combined heat and power, and absorption chiller units.
ZEBs harvest available energy to meet their electricity and heating or cooling needs. In the case of individual houses, various microgeneration technologies may be used to provide heat and electricity to the building, using solar cells or wind turbines for electricity, and biofuels or solar collectors linked to seasonal thermal stores for space heating. To cope with fluctuations in demand, zero energy buildings are frequently connected to the electricity grid, export electricity to the grid when there is a surplus, and drawing electricity when not enough electricity is being produced.[7] Other buildings may be fully autonomous.
Energy harvesting is most often more effective (in cost and resource utilization) when done on a local but combined scale, for example, a group of houses, co-housing, local district, village, etc. rather than an individual basis. An energy benefit of such localized energy harvesting is the virtual elimination of electrical transmission and electricity distribution losses. These losses amount to about 7.2%-7.4% of the energy transferred.[8] Energy harvesting in commercial and industrial applications should benefit from the topography of each location. The production of goods under net zero fossil energy consumption requires locations of geothermal, microhydro, solar, and wind resources to sustain the concept.[9]
Zero-energy neighborhoods, such as the BedZED development in the United Kingdom, and those that are spreading rapidly in California and China, may use distributed generation schemes. This may in some cases include district heating, community chilled water, shared wind turbines, etc. There are current plans to use ZEB technologies to build entire off-the-grid or net zero energy use cities.
One of the key areas of debate in zero energy building design is over the balance between energy conservation and the distributed point-of-use harvesting of renewable energy (solar energy and wind energy). Most zero energy homes use a combination of the two strategies.
As a result of significant government subsidies for photovoltaic solar electric systems, wind turbines, etc., there are those who suggest that a ZEB is a conventional house with distributed renewable energy harvesting technologies. Entire additions of such homes have appeared in locations where photovoltaic (PV) subsidies are significant,[10] but many so called "Zero Energy Homes" still have utility bills. This type of energy harvesting without added energy conservation may not be cost effective with the current price of electricity generated with photovoltaic equipment (depending on the local price of power company electricity),[11] and may also requires greater embodied energy and greater resources so be thus the less ecological approach.
Since the 1980s passive solar building design and passive house have demonstrated heating energy consumption reductions of 70% to 90% in many locations, without active energy harvesting. For new builds, and with expert design, this can be accomplished with little additional construction cost for materials over a conventional building. Very few industry experts have the skills or experience to fully capture benefits of the passive design. Such passive solar designs are much more cost effective than adding expensive photovoltaic panels on the roof of a conventional inefficient building.[11] A few kilowatt-hours of photovoltaic panels (costing 2 to 3 dollars per annual kW-hr production, U.S. dollar equivalent) may only reduce external energy requirements by 15% to 30%. A 100,000 BTU (110 MJ) high seasonal energy efficiency ratio 14 conventional air conditioner requires over 7 kW of photovoltaic electricity while it is operating, and that does not include enough for off-the-grid night-time operation. Passive cooling, and superior system engineering techniques, can reduce the air conditioning requirement by 70% to 90%. Photovoltaic generated electricity becomes more cost-effective when the overall demand for electricity is lower.
The energy used in a building can vary greatly depending on the behavior of its occupants. The acceptance of what is considered comfortable varies widely. Studies of identical homes in the United States have shown dramatic differences in energy use, with some homes using more than twice the energy of others.[12] Occupant behavior can vary from differences in setting and programming thermostats, varying levels of illumination and hot water, and the amount of miscellaneous electric devices used.[5]
Wide acceptance of zero energy building technology may require more government incentives or building code regulations, the development of recognized standards, or significant increases in the cost of conventional energy.
The Google photovoltaic campus, and the Microsoft 480-kilowatt photovoltaic campus relied on U.S. Federal, and especially California, subsidies and financial incentives. California is now providing $3.2 billion USD in subsidies[13] for residential-and-commercial near-zero-energy buildings, due to California's serious electricity shortage, frequent power outages, and air pollution problems. The details of other American states' renewable energy subsidies (up to $5.00 USD per watt) can be found in the Database of State Incentives for Renewables and Efficiency.[14] The Florida Solar Energy Center has a slide presentation on recent progress in this area.[15]
The World Business Council for Sustainable Development[16] has launched a major initiative to support the development of ZEB. Led by the CEO of United Technologies and the Chairman of Lafarge, the organization has both the support of large global companies and the expertise to mobilize the corporate world and governmental support to make ZEB a reality. Their first report, a survey of key players in real estate and construction, indicates that the costs of building green are overestimated by 300 percent. Survey respondents estimated that greenhouse gas emissions by buildings are 19 percent of the worldwide total, in contrast to the actual value of roughly 40 percent.[17]
Those who commissioned construction of Passive Houses and Zero Energy Homes (over the last three decades) were essential to iterative, incremental, cutting-edge, technology innovations. Much has been learned from many significant successes, and a few expensive failures.
The zero energy building concept has been a progressive evolution from other low-energy building designs. Among these, the Canadian R-2000 and the German passive house standards have been internationally influential. Collaborative government demonstration projects, such as the superinsulated Saskatchewan House, and the International Energy Agency's Task 13, have also played their part.
The goal of green building and sustainable architecture is to use resources more efficiently and reduce a building's negative impact on the environment.[19] Zero energy buildings achieve one key green-building goal of completely or very significantly reducing energy use and greenhouse gas emissions for the life of the building. Zero energy buildings may or may not be considered "green" in all areas, such as reducing waste, using recycled building materials, etc. However, zero energy, or net-zero buildings do tend to have a much lower ecological impact over the life of the building compared with other "green" buildings that require imported energy and/or fossil fuel to be habitable and meet the needs of occupants.
Because of the design challenges and sensitivity to a site that are required to efficiently meet the energy needs of a building and occupants with renewable energy (solar, wind, geothermal, etc.), designers must apply holistic design principles, and take advantage of the free naturally occurring assets available, such as passive solar orientation, natural ventilation, daylighting, thermal mass, and night time cooling.
Many Green building certification programs do not require a building to have net zero energy use, only to reduce energy use a few percentage points below the minimum required by law. The Leadership in Energy and Environmental Design (LEED) certification developed by the U.S. Green Building Council, and Green Globes, involve check lists that are measurement tools, not design tools. Inexperienced designers or architects may cherry-pick points to meet a target certification level, even though those points may not be the best design choices for a specific building or climate.
In 2011 Energy Payesh House (EPH) or Khaneh Niroo Payesh by a collaboration of Fajr-e-Toseah Consultant Engineering Company and ancouver Green Homes Ltd] under management of Energy Payesh Group (EPG) launched the first Net-Zero passive house in Iran. This concept makes the design and construction of EPhouse a sample model and standardized process for mass production by MAPSA.
Also an example of the new generation of zero energy office buildings is the 24-story OIIC Office Tower, which is started in 2011, as the OIIC Company headquarter. It uses both modest energy efficiency, and a big distributed renewable energy generation from both solar and wind. It is managed by Rahgostar Naft Company and advised by Dr. Homayoun Arbabian (CEA) in Tehran, Iran. The tower is receiving economic support from government subsidies that are now funding many significant fossil-fuel-free efforts.
In 2005 Scandinavian Homes[29] launched the worlds first standardised passive house in Ireland, this concept makes the design and construction of passive house a standardised process. Conventional low energy construction techniques have been refined and modelled on the PHPP (Passive House Design Package) to create the standardised passive house. Building offsite allows high precision techniques to be utilised and reduces the possibility of errors in construction.
In 2009 the same company started a project to use 23,000 liters of water in a seasonal storage tank,[30] heated up by evacuated solar tubes throughout the year, with the aim to provide the house with enough heat throughout the winter months thus eliminating the need for any electrical heat to keep the house comfortably warm. The system is monitored and documented by a research team from The University of Ulster and the results will be included in part of a PhD thesis.
In October 2007, the Malaysia Energy Centre (PTM) successfully completed the development and construction of the PTM Zero Energy Office (ZEO) Building. The building has been designed to be a super-energy-efficient building using only 286 kW·h/day. The renewable energy - photovoltaic combination is expected to result in a net zero energy requirement from the grid. The building is currently undergoing a fine tuning process by the local energy management team. Findings are expected to be published in a year.[31]
In September 2006, the Dutch headquarters of the World Wildlife Fund (WWF) in Zeist was opened. This earth-friendly building, gives back more energy than it uses. All materials in the building were tested against strict requirements laid down by the WWF and the architect.[32]
In February 2009, the Research Council of Norway assigned The Faculty of Architecture and Fine Art at the Norwegian University of Science and Technology to host the Research Centre on Zero Emission Buildings (ZEB), which is one of eight new national Centres for Environment-friendly Energy Research (FME). The main objective of the FME-centres is to contribute to the development of good technologies for environmentally friendly energy and to raise the level of Norwegian expertise in this area. In addition, they should help to generate new industrial activity and new jobs. Over the next eight years, the FME-Centre ZEB will develop competitive products and solutions for existing and new buildings that will lead to market penetration of zero emission buildings related to their production, operation and demolition.
Singapore's first zero energy building was launched at the inaugural Singapore Green Building Week.[33]
The Swiss MINERGIE-A-Eco label certifies zero energy buildings. The first building with this label, a single-family home, was completed in Mühleberg in 2011.[34]
In December 2006 the government announced that by 2016 all new homes in England will be zero energy buildings. To encourage this, an exemption from Stamp Duty Land Tax is planned. In Wales the plan is for the standard to be met earlier in 2011, although it is looking more likely that the actual implementation date will be 2012. However, as a result of a unilateral change of policy published at the time of the March 2011 budget, a more limited policy is now planned which, it is estimated, will only mitigate two thirds of the emissions of a new home.[35][36]
In the US, ZEB research is currently being supported by the US Department of Energy (DOE) Building America Program ,[37] including industry-based consortia and researcher organizations at the National Renewable Energy Laboratory (NREL), the Florida Solar Energy Center (FSEC), Lawrence Berkeley National Laboratory (LBNL), and Oak Ridge National Laboratory (ORNL). From fiscal year 2008 to 2012, DOE plans to award $40 million to four Building America teams, the Building Science Corporation; IBACOS; the Consortium of Advanced Residential Buildings; and the Building Industry Research Alliance, as well as a consortium of academic and building industry leaders. The funds will be used to develop net-zero-energy homes that consume at 50% to 70% less energy than conventional homes.[38]
DOE is also awarding $4.1 million to two regional building technology application centers that will accelerate the adoption of new and developing energy-efficient technologies. The two centers, located at the University of Central Florida and Washington State University, will serve 17 states, providing information and training on commercially available energy-efficient technologies.[38]
The U.S. Energy Independence and Security Act of 2007[39] created 2008 through 2012 funding for a new solar air conditioning research and development program, which should soon demonstrate multiple new technology innovations and mass production economies of scale.
The 2008 Solar America Initiative funded research and development into future development of cost-effective Zero Energy Homes in the amount of $148 million in 2008.[40][41]
The Solar Energy Tax Credits have been extended until the end of 2016. Solar power in the United States
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be Zero-Net-Energy by 2030.
Energy Free Home Challenge - In 2007, the philanthropic Siebel Foundation created the Energy Free Home Foundation. The goal was to offer $20 million in global incentive prizes to design and build a 2,000 square foot (186 square meter) three-bedroom, two bathroom home with (1) net-zero annual utility bills that also has (2) high market appeal, and (3) costs no more than a conventional home to construct.[42]
The plan included funding to build the top ten entries at $250,000 each, a $10 million first prize, and then a total of 100 such homes to be built and sold to the public.
Beginning in 2009, Thomas Siebel made many presentations about his Energy Free Home Challenge.[43] The Siebel Foundation Report stated that the Energy Free Home Challenge was "Launching in late 2009".[44]
Berkley National Laboratory (University of California, Berkley) participated in writing the "Feasibility of Achieving Zero-Net-Energy, Zero-Net-Cost Homes"[45] for the $20-million Energy Free Home Challenge.
Although the energyfreehome.org website is still defined, everything about the $20-million Challenge has been deleted without explanation.[46]
If implemented, the Energy Free Home Challenge would have provided much-needed increased incentives for improved technology and consumer education about zero energy building at the same cost as conventional housing.